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Protein translation is at the heart of cellular metabolism and its in-depth characterization is key for many
lines of research. Recently, ribosome profiling became the state-of-the-art method to quantitatively char-
acterize translation dynamics at a transcriptome-wide level. However, the strategy of library generation
affects its outcomes. Here, we present a modified ribosome-profiling protocol starting from yeast, human
cells and vertebrate brain tissue. We use a DNA linker carrying four randomized positions at its 50 end and
a reverse-transcription (RT) primer with three randomized positions to reduce artifacts during library
preparation. The use of seven randomized nucleotides allows to efficiently detect library-generation arti-
facts. We find that the effect of polymerase chain reaction (PCR) artifacts is relatively small for global
analyses when sufficient input material is used. However, when input material is limiting, our strategy
improves the sensitivity of gene-specific analyses. Furthermore, randomized nucleotides alleviate the
skewed frequency of specific sequences at the 30 end of ribosome-protected fragments (RPFs) likely
resulting from ligase specificity. Finally, strategies that rely on dual ligation show a high degree of
gene-coverage variation. Taken together, our approach helps to remedy two of the main problems
associated with ribosome-profiling data. This will facilitate the analysis of translational dynamics and
increase our understanding of the influence of RNA modifications on translation.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein translation is the most energy-consuming cellular pro-
cess and lies at the heart of metabolism. The tight regulation of
translation and preserving its fidelity is therefore absolutely essen-
tial. Interestingly, all major classes of RNA molecules critical for
translation contain chemically modified nucleosides that influence
translation dynamics [1]. In particular, transfer RNAs (tRNAs), the
adaptor molecules that link the genetic information of the codons
to their respective amino acids carry a plethora of modifications
affecting tRNA folding, aminoacylation or codon recognition
thereby influencing protein synthesis. Modifications of the anti-
codon loop have been linked to translation and shown to be critical
to maintain proteome integrity [2–4]. Thus, methods to analyze
how modified nucleosides influence global and local translational
dynamics are becoming increasingly important. Recently,
ribosome profiling has dramatically improved our ability to
characterize translation in vivo [5]. The method allows to study
transcriptome-wide ribosome dynamics and has been used for
the characterization of several complex biological processes [6].
Ribosome profiling generally relies on the use of translation inhibi-
tors to arrest ribosomes in defined conformations [5,7,8]. Subse-
quently, the parts of mRNA that are not actively read at the
moment of lysis and hence not protected by ribosomes are
digested by the addition of nucleases. This digest leads to a strong
enrichment of ribosome-protected fragments (RPFs) that can be
analyzed by deep sequencing [5,9]. Importantly, ribosome profiling
more information than just levels of gene translation. Due to the
precise mapping of the A- and P-sites, ribosome profiling can accu-
rately provide positional information of translation at sub-codon
resolution. This feature has been used to analyze the function of
modified tRNA nucleosides from yeast to mice [3,4,10–12].
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Even though its development has sparked huge excitement in
fields related to translational control, ribosome profiling is still
an emerging technology, which warrants an improvement in its
accuracy and sensitivity. The protocol described by Ingolia and
coworkers is complex and requires time and experience [5,7]. This
has led to various attempts to shorten it or to reduce hands on
time by using commercial kits for library preparation (e.g.
[13,14]). Furthermore, recent improvements found sophisticated
methods to use less input material, a strategy that needs to be bal-
anced with the necessity to use suboptimal concentrations of
material in the enzymatic reactions and to amplify libraries by
PCR [15]. However, not all of these updates were systematically
compared to the original protocol and may cause undesirable
biases. Here we present a ribosome-profiling protocol that relies
on randomized linker and reverse-transcription (RT) primer
sequences fully compatible with standard protocols [7] that
reduces biases and allows to identify artifacts during downstream
bioinformatics analysis. Furthermore, we provide examples of how
to funnel different types of input materials, such as yeast, cultured
cells or vertebrate tissues into the library-preparation process (see
Supplementary protocol for additional information). Originally,
the protocol was optimized for codon-speed analyses as needed
in the characterization of tRNA modifications. However, our proto-
col will be useful for all applications of ribosome profiling with
limited amounts of input material.
2. Protocol

2.1. Library preparation

2.1.1. Lysis
Isolation of intact ribosome-mRNA complexes that accurately

represent in vivo translation is a critical step during sample prepa-
ration. Prolonged treatment with translation inhibitors can distort
coverage or codon-level profiles [16]. While, more recent isolation
procedures recommend cryogenic grinding, if done excessively, it
too can distort polysome integrity. Thus, pre-treatment with
translation inhibitors and the subsequent lysis method need to
be optimized depending on sample type. As a starting point for
optimization, we recommend the following methods for lysate
preparation:

1. 100–250 ml yeast cultures are treated for 1 min with 100 lg/ml
CHX to stabilize elongating ribosomes and harvested by rapid
vacuum filtration (�45 s) and flash freezing. Cells are cryogeni-
cally pulverized in a SPEX 6750 Freezer-Mill (SPEX 6750
SamplePrep) at 5 cps in yeast lysis buffer (20 mM Tris-HCl pH
7.5, 100 mM NaCl, 10 mM MgCl2, 1% Triton X-100 with freshly
added 0.5 mM DTT and 100 lg/ml CHX).

2. Cultured mammalian cells are treated with medium containing
100 lg/ml CHX for 1 min, washed with ice cold PBS containing
100 lg/ml CHX and harvested by scraping in vertebrate lysis
buffer (10 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2,
1% Triton X-100 with freshly added 0.5 mM DTT, 0.5%
deoxycholate (w/v) and 100 lg/ml CHX).

3. Flash-frozen brain tissue is thawed in vertebrate lysis buffer
and lysed by mechanical force with a pestle followed by titurat-
ing at least 10 times through a 20-G needle to ensure complete
lysis.

Immediately after the lysis, cell debris is removed by
centrifugation at 4 �C, 3000 g for 3 min followed by clarifying
the supernatant by additional centrifugation at 4 �C, 10,000g
for 5 min. Lysates are flash-frozen in liquid nitrogen until
digestion.
2.1.2. Digestion of polysomes
Nuclease digestion of polysomes to obtain RPFs requires a com-

promise between efficient degradation of unprotected mRNA and
rRNA contamination resulting from over digestion. Therefore, we
recommend performing polysome profiling with undigested sam-
ple and titrating the digestion strength to find the best conditions:
a clearly visible monosome peak without polysomes, ultimately
resulting in libraries with coverage in coding exons and little rRNA
contamination. Great care needs to be taken at this step, since
incomplete digest will result in spurious reads e.g. in untranslated
regions (UTR) that do not stem from translating ribosomes.

Thawed lysates (from 2.1.1) are treated with RNase I (Ambion)
at a sample type-dependent concentration (11.25 U and 30 U of
RNase I/A260 unit of extract for yeast and vertebrate samples,
respectively) and incubated for 1 h (yeast) or 10 min (vertebrates)
at 22 �C with continuous agitation. RNase I digestion is inhibited by
adding 150 U SUPERase In (Ambion). Deoxycholate concentration
in vertebrate samples is increased to 1% (w/v) to relieve ribosome
aggregates and samples are loaded onto linear 10–50% (w/v)
sucrose gradients (50 mM Tris-HCl pH = 7.5, 50 mM NH4Cl,
12 mM MgCl2, 0.5 mM DTT, 100 lg/ml CHX). Subsequently, sam-
ples are treated in an identical fashion irrespective of their origin.

2.1.3. Polysome profiling and footprint isolation
Sucrose gradients are centrifuged for 3 h at 35,000 rpm, 4 �C in a

TH-641/SW-41 rotor (Thermo Scientific/Beckman Coulter). Gradi-
ents are fractionated using a density gradient fractionator (Isco)
and a SYR-101 syringe pump (Brandel) with 60% sucrose (flow
rate = 0.75 ml/min) and continuous monitoring of A254. SDS (final
concentration 1%) is immediately added to fractions corresponding
to the monosome peak, which are pooled, flash-frozen and stored
at �80 �C. Total RNA is recovered from monosome samples using
the hot-acid-phenol method which involves incubating samples
for 5 min at 65 �C with intermittent vortexing, followed by three
rounds of acid-phenol (pH 4.3) chloroform (5:1 ratio) extraction.
The aqueous phase is extracted once with chloroform and total
RNA is recovered by ethanol precipitation. 10 lg of total RNA from
monosome fractions are recommended as input for RPF isolation,
but we have made libraries from as little as 1 lg. RPFs are size-
selected by separating RNA on 15% polyacrylamide-TBE-Urea gels
(8 M urea, 1 � TBE) followed by staining with SYBR Gold (Life
Technologies) and excision of 28–30 nt bands.

For mammalian samples rich in rRNA fragments the Ribo-Zero
Gold rRNA removal kit (Illumina) can be used at this stage accord-
ing to the manufacturer’s instructions, but using only half of the
recommended amounts of reagents.

2.1.4. Isolation and fragmentation of samples for poly(A) RNA
sequencing

Yeast total RNA is extracted from the fractions of cultures that
are used for ribosome profiling. Cells are harvested by rapid vac-
uum filtration, resuspended in ice-cold 50 mM NaOAc (pH 5.5),
10 mM EDTA, followed by addition of SDS (final concentration
1%), and homogenized in a Percellys 24 bead beater (Bertin Tech-
nologies) at power setting 6.5 for two cycles of 20 s. Lysates are
clarified by centrifugation at 4 �C, 10,000g for 5 min.

For cultured mammalian cells and brain tissue, SDS (final con-
centration 1%) is added to clarified aliquots from pre-digest lysates.

Subsequently, samples are treated in exactly the same manner
irrespective of their origin. Samples are incubated with 100 lg/
ml Proteinase K for 10 min at 60 �C. Total RNA is extracted using
the hot-acid-phenol method (see above) and 100 lg of it is treated
with TURBO DNase (Ambion) followed by poly(A) RNA purification
by two rounds of selection with the Poly(A)Purist MAG kit
(Ambion) according to the manufacturer’s instructions. Poly(A)
RNA is subjected to random fragmentation via alkaline hydrolysis
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in 50 mM sodium bicarbonate (pH 9.2) and 1 mM EDTA for 20 min
at 95 �C. RNA is purified by ethanol precipitation and fragments of
50–80 nt are extracted from a 15% polyacrylamide TBE-urea gel
(8 M urea, 1 � TBE) stained with SYBR Gold (Life Technologies).

2.1.5. Library preparation
Libraries from ribosome footprints and fragmented poly(A) RNA

are essentially prepared as described by Ingolia and coworkers [7].
Briefly, RNA fragments are dephosphorylated at their 30 end using
T4 PNK (NEB) for 1 h at 37 �C, extracted with acid-phenol:
chloroform (5:1) and precipitated in ethanol for 1 h at 80 �C.
Dephosphorylated RNA is ligated to 0.25–0.75 lg of adapters
depending on the amounts of input RNA, with total RNA and yeast
footprint samples using approximately 0.75 lg and vertebrate
samples with limited footprint inputs using 0.25 lg. Adapter and
target RNAs are denatured for 90 s at 80 �C followed by ligation
using T4 RNA ligase 2, truncated (NEB) for 4 h at 22 �C. Samples
are precipitated at �80 �C with ethanol and ligation fragments of
�50 nt (RPFs) are excised from 15% polyacrylamide-TBE-Urea gels
(8 M urea, 1 � TBE). Adaptor ligated RNAs are denatured for 90 s at
80 �C with 1 ll of 10 lM randomized or standard RT primer in a
12 ll reaction and reverse transcribed using SuperScript III (Ther-
moFisher) for 40 min at 55 �C. Reverse transcribed libraries are
extracted from 10% polyacrylamide-TBE-Urea gels (8 M urea,
1 � TBE) at �135 nt (RPFs).

Depending on the degree of rRNA contamination, biotinylated
oligonucleotides complementary to reverse transcribed rRNA can
be employed at this stage. The quantity and type of contaminating
rRNA species depends on the type of starting material and diges-
tion strength. In our hands rRNA contamination of yeast libraries
was negligible and did not require subtraction. Samples are dena-
tured in 2� SSC with 200 lM biotinylated oligonucleotides at 90 �C
and cooled to 37 �C at 0.05 �C/s. Oligonucleotides with bound
reverse transcribed cDNA are removed by incubation with Dyn-
abeads� MyOneTM Streptavidin C1 (Thermo Fisher) and samples
precipitated with ethanol. ssDNA libraries are circularized with
CircLigase I or II (Epicentre) for 3 h at 60 �C followed by enzyme
inactivation for 10 min at 80 �C. The optimum PCR cycle number
required to generate the final library is experimentally determined
by performing a test PCR (typically stopping the reaction at 10, 12
and 14 cycles). The optimum cycle number is determined by run-
ning the test-PCR reactions on a gel (see below), selecting condi-
tions with a clearly visible library and no detectable background
smear. PCR is performed using Phusion polymerase (NEB), the for-
ward primer described by Ingolia and coworkers [7] and a standard
Illumina TrueSeq index adapter. Libraries of�175 nt size (RPFs) are
isolated from 8% polyacrylamide-TBE gels and precipitated in etha-
nol at �80 �C. Resuspended libraries are quantified using the Qubit
dsDNA HS Assay (Thermo Fisher) and sequenced on a suitable Illu-
mina sequencing platform.

2.2. Bioinformatics pipeline

Read counting and mapping for ribosome-profiling data is com-
parable to RNA-seq data analysis. We, therefore, use similar meth-
ods for mapping ribosome-profiling and RNAseq datasets.
However, libraries made using randomized linkers require addi-
tional steps of filtering for PCR duplicates and removal of random-
ized linkers compared to traditional libraries.

2.2.1. Linker clipping
We use the tool fastx_clipper (http://hannonlab.cshl.edu/

fastx_toolkit/) for initial clipping of fixed linker sequences and to
discard the reads lacking the linker or having unidentified nucleo-
tides (represented by an N). Processed reads longer than 30 nt for
mRNA and 25 nt for RPFs are kept for further analyses.
2.2.2. Amplification duplicate removal
To differentiate amplification duplicates from actual biological

duplicates we use a customized python script (available upon
request). Briefly, the script accepts fastq files containing sequences
with clipped randomized linkers, filters amplification duplicates,
trims the randomized nucleotides in the reads and returns a text
file containing information about detected duplicates and a fastq
file containing processed reads. Additionally, the script can gener-
ate graphs showing the ligation events in the samples and tables
that can be used to perform an in-depth analysis of the ligation
process. Furthermore, the script can be used to remove identical
reads by setting the randomized linker lengths to 0.

2.2.3. Removal of rRNA sequences
Despite its depletion during library preparation, rRNA remains

an abundant contaminant in ribosome-profiling datasets. Contam-
inating reads are removed by aligning against a reference contain-
ing all the rRNA of the organism of interest using a short read
aligner such as Bowtie [17]. During this process mismatches can
be accepted and multi-mapping is allowed, since rRNA reads might
map to more than one genomic copy of rRNA genes. rRNA read
removal can also be performed by local alignment before amplifi-
cation duplicate and randomized linker removal.

2.2.4. Genome alignment
The remaining reads are aligned to a genome or transcriptome

using a splice-aware aligner (for example TopHat2 [18]) with strin-
gent parameters not allowing mismatches and multi-mapping. We
suggest performing optional codon-composition analyses only in
cases where the performance of the randomized linkers needs to
be assessed or if the quality of the library indicates that a signifi-
cant fraction of the reads might originate from artifacts.

2.2.5. Codon occupancy
To determine transcriptome-wide A-site-codon occupancy we

use a published strategy [3,19]. Briefly, we analyze 28–30 nt long
RPFs without mismatch to annotated coding sequences, which
show the highest level of codon periodicity in these samples. The
offset used to determine the A-site position of a read is based on
a characteristic inflection of ribosome occupancy at 12–13 nt
upstream of annotated start codons. To pinpoint A-site positions
we therefore choose positions 15–16 nt from the 50 end of reads.
We select reads mapped to canonical ORFs in the 0 or �1 frame,
using offsets of 15 and 16 nt respectively. Occupancy of A-site
codons is normalized by the frequency of the same codon in the
non-decoded +1, +2 and +3 triplets relative to the A-site. In con-
trast to the �1, �2 and �3 triplets, these codons have not been
read by the ribosome. Thus, their frequency is not influenced by
ribosome dynamics and reflects codon usage without biases. A
script to generate plots of transcriptome-wide A-site codon occu-
pancy (e.g. Fig. 1E) is available upon request.
3. Strong biases in dual ligation libraries

We compared yeast ribosome-profiling libraries generated from
isolated RPFs that were further processed by a commercial kit
using dual ligation to libraries generated according to the circular-
ization protocol [3] using the same conditions for harvesting, lysis,
digestion and isolation of protected fragments but not from the
same extract. We noticed uneven coverage of ORFs in the dual-
ligation libraries (Fig. 1A). This is in agreement with previous
reports showing an inherent bias of RNA ligases [20,21]. To assess
the extent of this phenomenon, we plotted the standard deviation
of codon coverage per transcript after correcting the values accord-
ing to library size by dividing each value by the sample median of

http://hannonlab.cshl.edu/fastx_toolkit/
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Fig. 1. Comparison of library preparation methods. (A) RPF coverage of representative yeast ORFs made with a commercial dual ligation kit or according to a circularization
based approach. Coverage of circularization-based libraries is given in orange, dual ligation libraries in light blue (colors match in A, B, C and E). The annotated ORF is
indicated in dark blue. (B) Boxplot showing standard deviations of codon coverage of individual transcripts in three replicates of the ribosome-profiling libraries shown in A.
Sequencing density was corrected for library size and the first 15 codons in each gene were omitted from analysis. Higher values and wider boxplots point to uneven coverage
of transcripts. (C) Principal Component Analysis (PCA) comparing transcript read counts from both library types using three replicates each. Top right: Regression analysis of
transcript read counts from both libraries, regression line in red. Spearman correlation: 0.8771. (D) Differential expression of two-linker ligation libraries relative to
circularization libraries (n = 3) using DESeq2 with a log2 fold change threshold of 0.8 and an adjusted p-value of 0.05. Differentially expressed genes are indicated in red. (E)
Codon-specific A-site ribosome occupancy relative to downstream sites (mean ± SD, n = 3). Symbol size indicates the relative frequency of codons in the A-site.
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the mean-coverage values per gene, similar to the size-correction
method used in the DEseq2 package [24]. We observed a higher
coverage variation in dual-ligation libraries even after excluding
the coverage peak in the first 15 codons of each gene (Fig. 1B).
To test whether the less even coverage of ribosome-profiling
libraries is inherent to the dual-ligation method, we analyzed pub-
lished ribosome-profiling datasets from yeast [22,23]. Indeed, we
found that libraries generated by dual-ligation were overall more
variable (Fig. S1). This effect leads to significant differences in the
observed translation levels in our libraries. Both library types are
clearly separated by their principal components and replicates of
dual-ligation libraries were less consistent, while differences
between circularization libraries were negligible (Fig. 1C). Strik-
ingly, the correlation of average ribosome occupancy between
the libraries is <0.9, a poor value for ribosome profiling. We used
DESeq2 [24] to compare gene expression between these libraries
made from the same yeast strain and lysed according to the same
protocol. 881 genes are called as differentially translated arguably
based on the library generation protocol (Fig. 1D). To test whether
codon-occupancy measurements are similarly affected, we deter-
mined transcriptome-wide A-site codon occupancy in both
libraries (Fig. 1E) [3]. Similar to translation level, in the library con-
structed by the dual-ligation strategy several codons deviate
clearly and exhibit a higher degree of sample-to-sample variation,
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an effect that is independent of overall codon frequency. This strat-
egy would thus compromise the use of ribosome profiling to study
the impact of tRNA modifications on the translation speed of
specific codons. Therefore, we do not recommend the use of
dual-ligation libraries for codon analysis. Importantly, the original
protocol uses cDNA circularization to avoid biases during 50 linker
ligation [5,7]. This strategy improves the libraries, but potential
biases resulting from 30 linker ligation remain. Finally, the PCR
amplification of cDNA may selectively amplify certain sequences
thus distorting the relative abundance of reads [25,26].
4. A dual randomization strategy for bias prevention and
removal

To be able to detect subtle differences in translation levels and
codon occupancy, we sought to reduce library artifacts. In miRNA
sequencing, the 50 end of the DNA linker was shown to affect
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domized linker sequence, this strategy would mistake the
abundance of this RPF as an amplification artifact. To distinguish
such cases from PCR over-amplification, we further randomized 3
nucleotides at the 30 end of the RT primer. Overall, our strategy
introduces seven randomized nucleotides to reduce biases of 30 lin-
ker ligation and circularization besides identifying and removing
PCR duplicates.
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extracts. From each replicate, we generated three libraries using
different combinations of DNA-linker and RT-primer (Fig. 2): First,
a commercial non-randomized DNA-linker and the standard RT-
primer (fixed linker) [7], second, a DNA-linker randomized at its
four most 50 positions and the standard RT-primer (randomized
linker) and third, a DNA-linker randomized at its four most 50 posi-
tions and a RT-primer randomized at the last three nucleotides
(dual randomization). We did not include dual-ligation in this
experiment as this strategy had performed poorly in our
comparison.
5. Randomization allows duplicate identification

Duplicate reads can stem from individual ribosomes – and thus
reflect independent translation events (biological duplicates) – or
they can stem from artifacts of library preparation (library dupli-
cates). In the mRNA libraries, we found that roughly 80% of the
reads were unique using a fixed linker, while 20% scored as dupli-
cates based on multiple reads having identical sequences. It is
impossible to distinguish the artifacts among these duplicates from
biologically relevant sequences without randomization. The use of
randomized linker or dual randomization drastically reduced the
occurrence of duplicates (1% and 0.3%), since the reads could be
classified with high confidence using the randomized sequences
as barcodes.

However, mRNA samples are approximately 50 nt long, provid-
ing ample sequence space to distinguish individual reads. In con-
trast, RPF reads are only 28–30 nt long, complicating their
distinction. Indeed, only 25% of all reads were unique using the
fixed linker, while 75% were classified as duplicates. Randomized
linker and dual randomization reduced the number of reads iden-
tified as amplification duplicates to 22% and 5%, respectively. This
shows that 7 randomized positions are generally sufficient to
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6. Duplicates arise when input material is limiting

Importantly, because yeast is translationally very active, we
started from sufficient input material allowing for optimal reaction
conditions during the different steps of the protocol. To assess
whether randomization will be more powerful in cases with lim-
ited input material e.g. postmitotic vertebrate tissues, we tested
the impact of two potential sources of artifacts. First, we performed
10 additional PCR cycles on the cDNA libraries that we had ana-
lyzed before, sequenced those and compared the results. This,
however, did not change the number of amplification duplicates
(data not shown). Second, we tested whether starting from less
input material affects the outcome by using 3–6 times less input
and an additional 20� dilution before library amplification. We
found that this increased the number of duplicates in the libraries
by up to 57%, based on the replicate and type of linker used
(Fig. 3B). However, the barcoding through randomized positions
allows to identify and to remove the amplification duplicates,
which constitute 18–48% of the potential duplicate reads. This
emphasizes the importance of barcoding to remove the significant
number of duplicate reads in many low input ribosome-profiling
libraries.

7. Randomized linkers alleviate end biases by enhanced
fragment ligation

Next, we analyzed whether certain triplets are more likely to
occur in the different high-input, high sequencing-depth libraries
and found that the global frequency of triplets correlated well
between all datasets (data not shown). Thus, all three strategies
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perform well in generating a global snapshot of the transcriptome
and translatome. To study the influence of randomization on
linker-ligation biases, we quantified whether specific triplets are
enriched or depleted at the 30 end of the reads relative to the rest
of the read. This can be critical, since this region of the read is used
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is likely due to their shorter length and the large influence of
codons in particular in the A-site of the ribosome on read-
composition. However, the frequency at the last position of the
reads is most distinct from the word-composition of the overall
read and deviates between library types (Fig. 4B). We then calcu-
lated the distance of each triplet from the ideal correlation and
plotted the result for all RPF libraries (Fig. 4C) and for all mRNA
libraries (Supplementary Fig. 2B). It is apparent that the libraries
with randomized linkers perform very similarly. In contrast, in
libraries generated with fixed linkers certain words clearly deviate
in their end frequency. Among the most striking changes is the
underrepresentation of TGC and GTG triplets or rather the larger
GTGC, CTGC, TTGC and GGTG 4-mers (Supplementary Fig. 3), which
might reflect a ligation bias. When plotting the frequency of each
triplet at the end relative to the occurrence of each triplet in the
libraries, only very few triplets deviate. Thus, all three circulariza-
tion strategies lead to valid outcomes if analyzing codon-
occupancy on a global level. However, this may differ when analyz-
ing translation of individual genes on a codon-by-codon basis.

8. Concluding remarks

Ribosome profiling is a powerful technique to quantitatively
analyze the cellular translation landscape in a high-throughput
manner [6]. The methodological improvement that we describe
here allows for a more reliable recovery of individual codons.
Our protocol will help to further the characterization of transla-
tional dynamics by providing a strategy for the generation of
high-quality ribosome-profiling libraries from different starting
material. In particular, this method proves powerful when input
material is limiting, a common situation when working with cell-
culture or tissue samples.

We introduce a total of seven randomized positions to the DNA
linker and to the RT primer. The use of randomized nucleotides
allows to decrease the overall noise in ribosome-profiling and
small RNA datasets via reliable detection and removal of amplifica-
tion duplicates [27,30]. When performing general gene-translation
analysis starting from sufficient material, the use of randomized
linkers does not appear to be critical. In these cases the use of
the standard circularization protocol achieves sufficient informa-
tion. Importantly, library artifacts occur when preparing
ribosome-profiling libraries under conditions that are realistic for
mammalian cells, where input material is limiting. Our strategy
allows to correct for this and to further reduce the required input
material taking ribosome profiling one step closer to analysis on
the single-cell level.

Another critical step for codon-specific sequence analysis
appears to be the use of the previously established circularization
protocol [5,7]. Dual-ligation protocols using fixed linker proved to
severely perturb gene-translation analysis at the level of global
gene expression, codon-specific translation and coverage of indi-
vidual ORFs. We therefore, do not recommend its use for the gen-
eration of ribosome-profiling datasets despite the relative ease of
library preparation.

In summary, the implementation of our adapted protocol will
help to facilitate ribosome profiling as a technique to address open
questions not only in the field of RNA modifications.
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